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1
SMOKE DETECTION

CROSS REFERENCE TO RELATED
APPLICATIONS

The present application is a continuation of co-pending
U.S. patent application Ser. No. 14/162,547, filed Jan. 23,
2014, which is incorporated herein by reference in its
entirety.

ACKNOWLEDGMENT OF GOVERNMENT
SUPPORT

This invention was made with government support under
Contract No. DE-AC05-000R22725 awarded by the U.S.
Department of Energy. The government has certain rights in
the invention.

FIELD

The disclosure relates to smoke detection and methods to
train a classifier of a smoke detector.

BACKGROUND

The introduction of smoke detectors and their widespread
adoption has been tremendously successful in saving lives
and improving the safety of building occupants. Smoke
detectors are generally reliable and economical to employ
but, there remain some shortfalls in operation. For example,
nuisance or false alarms, which are triggered by non-fire
related sources, account for the majority of smoke alarm
activations. Many smoke detectors include an aerosol sensor
that can be susceptible to false alarms caused by aerosols
such as cooking fumes, dust, and fog. False alarms constitute
a serious concern, as occupants sometimes disable the
offending alarms, rendering them ineffective for warning
occupants of genuine fires.

Further, construction methods and room furnishing mate-
rials have changed over time such that fire growth rates have
increased and the time for safe egress has decreased. Arous-
ing occupants in a timely manner can have a large impact
upon fire safety, reducing the number of injuries and deaths.

SUMMARY

Accordingly, various embodiments are disclosed herein
related to smoke detection and smoke detectors. In one
embodiment, a method of training a classifier for a smoke
detector comprises inputting sensor data from a plurality of
tests into a processor. The sensor data is processed to
generate derived signal data corresponding to the test data
for respective tests. The derived signal data is assigned into
categories desirably comprising at least one fire group and at
least one non-fire group. Linear discriminant analysis (LDA)
training is performed by the processor. The derived signal
data and the assigned categories for the derived signal data
are inputs to the LDA training. The LDA training desirably
generates a centroid in linear discriminant coordinates for
each of the categories of groups, a plurality of coefficients
for transforming derived signal data into linear discriminant
(LD) coordinates, and a mean of group means. The plurality
of coefficients, the plurality of centroids, and the mean of
group means are stored in a computer readable medium.

In an alternative embodiment, a method for detecting a
hazardous condition comprises inputting sensor data from a
plurality of tests into a processor. The term hazardous
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2

condition refers to a condition that is potentially harmful and
that can be determined from the sensors being used (e.g.,
carbon monoxide levels in the case of a carbon monoxide
sensor; fire in the case of temperature and aerosol sensors).
The sensor data from the plurality of tests is processed using
the processor to generate or provide derived signal data
corresponding to the test data for respective tests. At least
one group is assigned to the derived signal data for a
respective test. The at least one group is selected from a
plurality of groups including a normal group, a flaming fire
group, and a non-flaming group. Linear discriminant analy-
sis (LDA) training is performed using the derived signal data
and the assigned at least one group for the respective tests as
input to the LDA training. The output of the LDA training
constitutes LDA training data and comprises a plurality of
transformation coefficients for transforming derived signal
data into linear discriminant (LD) coordinates, and desirably
a mean of group means and a plurality of centroids in linear
discriminant coordinates. The plurality of centroids desir-
ably includes a different centroid for each of the plurality of
groups. The plurality of transformation coefficients, the
mean group of means, and the plurality of centroids is stored
into a computer-readable memory which can be the memory
of a smoke detector. One or more sensors coupled to the
smoke detector is/are provided for sensing present environ-
mental conditions and providing data corresponding to the
sensed present environmental conditions. The data is desir-
ably provided in a plurality of data channels. The data from
the plurality of data channels is mapped into linear discrimi-
nant space using the plurality of stored transformation
coeflicients. The nearest centroid of the plurality of stored
centroids to the data from the plurality of data channels
mapped into linear discriminant space is determined. An
alarm is signaled if the nearest centroid is in a group
corresponding to a hazardous condition, such as a fire
condition.

In an alternative embodiment, a smoke detector comprises
a computer readable medium including a means to store
linear discriminant analysis (LDA) training data. The LDA
training data is generated by inputting sensor data from a
plurality of tests. The sensor data is indicative of environ-
mental conditions during the respective tests. The sensor
data is processed to generate or provide derived signal data
for the respective tests. The derived signal data for the
respective tests is assigned or classified into categories or
groups. Typically, the derived signal data for each of the
respective tests is classified by designating or assigning at
least one group to the derived signal data for the test. The
tests can produce derived data over time periods or intervals
and the derived data for different time intervals of a test can
be assigned to a different group. The at least one group is
selected from a plurality of groups and each group of the
plurality of groups is associated with a hazardous condition
or a non-hazardous condition. LDA training is performed
using the derived signal data and the assigned at least one
group for each test as input to the LDA training. The output
of the LDA training is a plurality of transformation coeffi-
cients for transforming derived signal data into linear dis-
criminant (D) coordinates and desirably a mean of group
means and a plurality of centroids in linear discriminant
coordinates. The plurality of centroids desirably includes a
different centroid for each group of the plurality of groups.

A smoke detector in accordance with this disclosure
comprises at least one sensor configured to observe present
environmental conditions. The at least one sensor desirably
comprises at least one aerosol sensor. A processor is opera-
tively connected to the at least one sensor. The processor is
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configured to process data from the at least one sensor to
provide data in a plurality of data channels indicative of the
present environmental conditions. The processor is config-
ured to map the data from the plurality of data channels into
linear discriminant space using the plurality of transforma-
tion coefficients stored in the computer readable medium.
The processor is configured to classify the present environ-
mental conditions as belonging to one group of the plurality
of groups based on the linear discriminant mapping of the
data from the plurality of data channels. The processor is
configured to signal an alarm condition if the present envi-
ronmental conditions are classified as belonging to a group
associated with a hazardous condition. The smoke detector
comprises an alarm operatively connected to the processor.
The alarm generates an audible alert, a visual alert, or a
combination thereof in response to the alarm signal.

The foregoing and other objects, features, and advantages
of the invention will become more apparent from the fol-
lowing detailed description, which proceeds with reference
to the accompanying figures.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a schematic of an example embodiment
of a system for a smoke detector comprising one or more
sensors.

FIG. 2 illustrates a schematic of a representative processor
in the form of a microcontroller and its connections to the
sensors in FIGS. 3-6.

FIG. 3 illustrates a schematic of a representative sensor,
specifically a carbon monoxide sensor.

FIG. 4 illustrates a schematic of a representative sensor,
specifically a temperature sensor.

FIG. 5 illustrates a schematic of a representative sensor,
specifically an ionization aerosol sensor.

FIG. 6 illustrates a schematic of a representative sensor,
specifically a photoelectric aerosol sensor.

FIG. 7 illustrates an embodiment of a method of training
a classifier for a smoke detector.

FIG. 8 illustrates example training data, processed base-
line data, linear discriminant (I.LD) signals, and assigned
groups.

FIG. 9 illustrates an embodiment of a method for a smoke
detector.

FIG. 10 illustrates an example of the transformation of the
experimental data in FIG. 8 from the time-domain to linear
discriminant space.

FIG. 11 illustrates an example plot of UL test fire data in
linear discriminant coordinates.

FIGS. 12A-12B illustrate examples of a linear discrimi-
nant analysis (LDA) coordinate progression in examples of
events to be detected.

FIG. 13 illustrates an example of NIST fire and nuisance
data categorized and plotted in two dimensions of linear
discriminant space.

DETAILED DESCRIPTION

Overview

This disclosure relates to smoke detectors. Throughout
this specification the terms “smoke alarm” and “fire alarm”
are used synonymously to mean “smoke detector.” A smoke
detector is a device that is used to detect one or more
conditions related to combustion, smoldering, and/or the
presence of toxic gas.

Many residential smoke alarms are based solely upon the
detection of smoke aerosol particles emitted from fires.
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Aerosol sensors are of at least two types, ionization and
photoelectric sensors. lonization and photoelectric aerosol
sensors are sensitive to various types of smoke aerosols but
also, unfortunately, to other aerosols, including cooking
fumes, dust, and fog. Some smoke alarms comprise a single
type of aerosol sensor while other smoke alarms comprise
both types of aerosol sensors. Combination ionization and
photoelectric detectors provide sensitivity to aerosols from
different types of fires. Thus, one sensor of a combination
smoke detector can address a weakness of another type of
sensor of the detector.

The concept of multiple sensors can be extended beyond
multiple aerosol sensors. For example, a smoke detector can
comprise additional sensors to detect other principal com-
bustion products, such as heat, carbon monoxide (CO), and
carbon dioxide (CO,). For example, each of the sensors can
provide a channel of data of the smoke detector so that the
smoke detector has more information for recognizing con-
ditions, adjusting alarm sensitivities, and deciding if an
alarm condition exists.

One function of a fire alarm is to determine whether
observed conditions indicate that an alarm is warranted. For
most existing alarms with a single aerosol detector, classi-
fication is simply to alarm for aerosol concentrations beyond
a fixed threshold. Unfortunately, nuisances can also some-
times trigger the alarm. Designing an alarm based upon
whether any one of several channels exceeds a certain
threshold can lead to excessive nuisance alarms if the
thresholds are set too low, or insensitivity to fire conditions
if the thresholds are set too high.

In accordance with this disclosure, Pattern recognition or
statistical classification based on linear discriminant analysis
is used to classify present environmental conditions as
hazardous, warranting an alarm, based on groupings or
determined from historical data of sensor responses to
environmental conditions.

Discriminant analysis is an advanced statistical technique
that allows data from multiple channels to be classified.
Linear discriminant analysis (LDA), for example, involves a
set of linear equations that can be readily evaluated on an
inexpensive microcontroller of a smoke detector. The term
microcontroller is synonymous with any type of electronic
data processor. The linear coefficients for the LDA are
determined beforehand using training data from fire sce-
narios. For example, data from prior tests is available from
the Underwriter’s Laboratory (UL) and the National Insti-
tute of Standards and Technology (NIST) and can be used
for training. In one example, statistical techniques allow
each sensor output and its rate of change to be included in
the analysis. A smoke alarm employing one or multiple
sensors and a suitably programmed microcontroller can
provide faster response to real threats while rejecting con-
ditions that would trigger false alarms in conventional
smoke alarms.

Linear Discriminant Analysis

Linear discriminant analysis is a form of supervised
pattern recognition that the inventors have recognized to be
an advantageous approach for classification of conditions
viewed as hazardous (e.g., fire indicating) based upon any
number of sensor channels. A set of discrimination rules are
constructed from training data and used to classify new
observations into predefined groups. The basis for pattern
recognition is desirably provided by actual field data of
smoke, temperature, and combustion products for stimulat-
ing prescribed sets of sensors to be incorporated in a system.

Linear discriminant analysis (LDA) is one approach that
classifies an observation according to its (multivariate) simi-
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larity or closeness to a group, category, or class of events. An
LDA may include two distinct phases: a training phase and
a classification phase. During the training phase, inputs to
the LDA are one or more data variables or channels and data
for classification into predefined groups. The data channels
may include raw sensor data, derived sensor data, or a rate
of change of sensor data. Outputs from the LDA may include
transformation coefficients, a centroid corresponding to each
predefined group, and a mean of group means. During the
classification phase, the observed data variables are trans-
formed by a linear transformation into new, uncorrelated
variables, called discriminant coordinates, in such a way as
to increase the differences among the predefined groups, as
measured on these variables.

A goal of linear discriminant analysis (LDA) is to separate
classes of events. For example, LDA can classify an obser-
vation at a point in time as belonging to a predefined group.
LDA classifies each observation of all data channels using a
linear transformation to obtain the discriminant coordinates,
i.e., the observation’s position in discriminant space. The
closeness of the discriminant coordinates to each of the
predefined classes or groups (e.g., “normal,” “nuisance,”
“fire,” “toxic,” etc.) can then be calculated—even by an
inexpensive microcontroller. The observation can be classi-
fied based on the nearest group.

In accordance with this disclosure, there is a hierarchy of
the discriminant coordinates. The first discriminant coordi-
nate, LD, accounts for the greatest separation among the
groups; the second discriminant coordinate, .D,, accounts
for the next greatest separation, and so forth. The maximum
number of discriminant coordinates that can be extracted is
one fewer than the number of groups.

Plots of combinations of the various discriminant coor-
dinates can be used to visualize group separations. Clear
group separations seen in multi-dimensional plots will indi-
cate success for those groups. As one example, two-dimen-
sional plots can be used. Groups that appear to overlap in
one plot (e.g., in the LD, vs. LD, plot), may appear sepa-
rated in another two-dimensional view (e.g., LD, vs. LD;).
A discrimination rule can still be effective, even though there
is no clear separation of groups in certain two-dimensional
plots.

To illustrate a specific example, assume that the fire-
detection system (e.g., smoke detector) consists of a micro-
controller and three sensors: an ionization chamber, a therm-
istor, and a carbon monoxide (CO) sensor. The
microcontroller can be configured, for example, based on
training data from room-sized fires and nuisance sources for
these three sensors. Specifically, the training data can be
used to determine the linear transformation to discriminant
coordinates [.D,, so that separation between one or more fire
groups and the one or more nuisance groups is made. The
data from the sensors may include their scalar values (pre-
processed if desired, e.g., averaged and baselined) and their
time derivatives for a total of six data channels. Suppose
there are four groups of interest: “normal,” “nuisance,”
“CO,” and “fire,” and there is training data from each group
on all six channels. Since there are four groups, a maximum
of three discriminant coordinates can be derived in this
example. However, a good classification can be obtained by
using only the first two coordinates. Let V, represent the six
data channels and a, and b, represent the corresponding
coefficients for the first and second linear discriminants
derived from the training set. Suppose (X, Y,) represent the
four group centroids calculated from the training data and
expressed in linear discriminant coordinates. The coeffi-
cients a, and b, for transforming the data channels into
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discriminant coordinates and the centroids (X;, Y;) of the
four groups can be stored in a microcontroller.

During operation of the fire-detection system, the three
sensors are sampled, the data are preprocessed, and the time
derivatives are taken. In this example, the preprocessed data
channels V, are then converted to discriminant coordinates
(LD,, LD,) by the linear transform:

n

>lav;=1D,

i

.
DbV =1D,
i

The squared Euclidean distances to each of the centroids
are then calculated in the example:

RP=(Y-LD,P+(Y-LD,)

The discriminant classification in this example is the nearest
group to the data channels in discriminant space, e.g., the
group associated with the smallest Rjz. The discriminant
classification can be sent to a monitoring station, used
directly for alarm, or further checks and rules can be applied
before sounding the alarm. Such an algorithm can be readily
employed by inexpensive (<$1) microcontrollers.

Smoke Detector Systems

Turning to the figures, FIG. 1 illustrates a schematic of an
example embodiment of a system 100 for a smoke detector
comprising one or more sensors. System 100 includes a
processor 110, storage 120, a sensor 130, an analog-to-
digital converter (ADC) 140 (used to provide signal data if
not available directly from the sensor), and an output device
150. In one embodiment, one or more components of the
system 100 may be integrated into an application specific
integrated circuit (ASIC) or programmable logic device.

In one embodiment, the processor 110 is a low-cost
microcontroller, such as a MSP430, available from Texas
Instruments (Texas, USA). In an alternative embodiment,
the processor 110 may be a central processing unit (CPU) of
a personal computer. The processor 110 is operatively con-
nected to storage 120 and the processor 110 is configured to
execute instructions that are stored in storage 120. The
storage 120 is a computer readable medium and may include
volatile and/or non-volatile storage such as read-only
memory (ROM), random access memory (RAM), ferroelec-
tric RAM (FRAM), FLASH memory, a hard disk drive, or
other media suitable for storing computer-executable
instructions and scratch-pad calculations of the processor
110. The storage 120 may be used for storing the outputs of
LDA ftraining, and the storage 120 may be populated with
training data obtained from the method 700 as described
below with reference to FIG. 7. The storage 120 may be used
for storing instructions, which when executed by processor
110, are capable of carrying out methods of smoke detection.
Thus, the processor 110 can be configured or programmed to
perform LDA techniques and to analyze data from multiple
channels of data to be classified as “fire,” “nuisance,” or
“normal” conditions, such as described below with reference
to FIG. 9. For systems that include a CO sensor, a fourth
class can be added to indicate the presence of that toxic gas,
such as according to UL-2034 specifications.

The processor 110 is operatively connected to and com-
municates with the output device 150. In one embodiment,
the output device 150 can include a speaker and the pro-
cessor 110 may be configured to modulate the speaker when
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a hazardous condition is detected. For example, the proces-
sor 110 can cause the speaker to emit one tone when a “fire”
condition is detected and a different tone when a toxic gas
condition is detected. In alternative embodiments, the output
device 150 can include a sounder, a buzzer, a visual indi-
cator, or combinations thereof.

The processor 110 is operatively connected to and com-
municates with the sensor 130. The processor 110 can
receive data over a channel of data from the sensor 130, for
example. In one embodiment, the output of the sensor 130
is an analog signal and the signal is converted to a digital
signal via the ADC 140. The ADC 140 may be integrated
within a microcontroller, such as the processor 110. In an
alternative embodiment, the sensor 130 may output a digital
signal which can be directly communicated to the processor
110. In yet another alternative embodiment, the processor
110 communicates with a plurality of sensors including the
sensor 130. For example, the processor 110 can receive data
over a channel of data from each of the sensors. In other
words, the processor 110 can receive data from a plurality of
data channels. In this manner, the processor 110 can receive
multiple channels of data corresponding to multiple aspects
of the environmental conditions.

The sensor 130 can be any type of sensor suitable for
detecting one or more environmental conditions and output-
ting a signal corresponding to the one or more environmen-
tal conditions. Representative, but non-limiting, examples of
sensors include aerosol (photoelectric and ionization), tem-
perature, carbon monoxide, carbon dioxide, and Taguchi
sensors. Factors for selecting which and how many sensors
to use can include cost, power-consumption, reliability
(lifetime and track-record with fire detection), resistance to
false-alarms, and potential placement of the smoke detector.

Over the past four decades, aerosol sensors have proven
to be very effective for fire detection. Photoelectric-type
aerosol alarms are effective with larger-particle aerosols
often associated with smoldering fires, while ionization-type
aerosol alarms are sensitive to small-particle aerosols pro-
duced in flaming fires. Since these two sensor types tend to
be complementary, it can be desirable to include both types
of sensors to provide sensitivity for both types of fires.
Photoelectric-type aerosol alarms can be desirable for smoke
alarms that are to be placed primarily in bedrooms due to
their sensitivity to smoldering fires. For example, a sleeping
occupant in a bedroom may not be aware of a smoldering
fire and so rapid detection can be desirable.

Temperature sensors are desirable to monitor the heat
produced by a fire, especially with fast-growing fires. A
thermistor is an inexpensive example of a suitable tempera-
ture sensor and can respond rapidly, uses low power, and is
typically resistant to nuisance alarms.

Carbon monoxide is associated with nearly all fires, but it
is generally not associated with typical nuisance sources that
often cause false alarms. Manufacturers have developed
practical electrochemical CO sensors for toxic-gas monitors
and are beginning to incorporate them into home smoke
alarms. These CO sensors respond discriminately, use very
little power, and can last 7 years or more. These sensors can
have sensitivity levels of less than 1 part per million (ppm)
CO and rise times of roughly 20-30 seconds, which is
consistent with early fire detection needs.

Carbon dioxide (CO,) sensing is desirable. However,
current CO, sensors consume more power than is desirable
for a battery-operated residential smoke detector. Thus,
current CO, sensors may be more desirable for wired sys-
tems that do not have a lengthy requirement for battery
backup of the wired system. However, CO, sensors are a
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suitable option for smoke detectors of this disclosure, espe-
cially as their power requirements drop in the future.

Taguchi, or heated metal-oxide sensors, are also poten-
tially suitable as sensors because of their sensitivity to
combustion-related effluents. Such sensors can detect sub-
ppm changes in CO, hydrocarbons, formaldehyde, HCN,
HCl, acrolein, and other compounds. However, Taguchi
sensors are also sensitive to humidity changes and to inter-
ferents like cigarette smoke and other household products,
which limit effective levels of detection. Their properties can
also change over time, and their responsiveness can dimin-
ish following exposure to silicones and hair grooming
products, according to the manufacturer. Additionally, ordi-
nary Taguchi sensors consume more power than is desirable
for a battery-operated residential smoke detector. However,
micro-fabricated versions might be operated at levels as low
as 1 mW average power, approaching that available for
battery operation. Although Taguchi sensors are another
example of a type of sensor that can be used in smoke
detectors of this disclosure, due to questions about accep-
tance by the fire detection community, uncertainty about
lifetime and calibration, and their lack of specificity for
smoke combustion products, Taguchi sensors may not be as
desirable as other types of sensors.

Prototype Design & Construction

FIGS. 2-6 illustrate schematics of a prototype home
smoke alarm that has been constructed using multiple sen-
sors integrated by an inexpensive MSP430 microcontroller.
This demonstration prototype smoke alarm has been con-
structed using sensor components that have been well
proven for use in residential smoke alarms. In fact, the
sensors were selected from manufactured smoke alarms.
However, the sensors used in this exemplary prototype
provided analog output signals rather than using application-
specific integrated circuits (ASICs) that are frequently used
for aerosol sensors. These signals are converted to digital
signals by the central microcontroller in the prototype that is
also used also for power management and alarm generation.
The microcontroller and overall design also is configured to
process data and determine alarm conditions using linear
discriminant analysis.

FIG. 2 illustrates a schematic of a representative micro-
controller and its connections to the sensors in FIGS. 3-6.
The MSP430 integrates a processor (a 16-bit RISC CPU, in
this example), an ADC, and storage (FRAM, in this
example) onto a single integrated circuit. FIGS. 3-6 illustrate
schematics of representative sensors. Specifically, FIG. 3
illustrates a schematic of a carbon monoxide sensor; FIG. 4
illustrates a schematic of a temperature sensor; FIG. 5
illustrates a schematic of an ionization aerosol sensor; and
FIG. 6 illustrates a schematic of a photoelectric aerosol
sensor.

The prototype circuit allows up to four sensors to be
populated and used for discrimination, including ionization,
photoelectric, carbon monoxide (CO), and temperature sen-
sors. Alternative designs can use more or fewer sensors.
Baseline subtraction and rate of change were also imple-
mented along with a simple set of threshold alarms. A
low-frequency speaker (e.g., 520 Hz) was added for
improved alerting. The assembled prototype included com-
ponents mounted on a custom printed-circuit board and
enclosed in a custom shell, fabricated using a three-dimen-
sional plastic printer. The prototype served to demonstrate a
practical multiple-sensor smoke alarm that employs linear
discriminant analysis.

In FIG. 3, the CO sensor produces current (about 2.4
nA/ppm) that is converted by a high-impedance amplifier to
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a voltage, offset by 0.5V. In FIG. 4, the thermistor is
connected to an amplifier circuit designed to correct for
nonlinearity. In FIG. 5, the ionization-type aerosol sensor
operates by using a high-impedance amplifier to monitor the
voltage on an internal plate that changes when excess charge
accumulates due to aerosol particles inside the sensor. A
voltage-doubling integrated circuit (such as a MAX1682
circuit available from Maxim Integrated) is used in this
example to bias the outer shell of the ion sensor to +6.6V. In
FIG. 6, the photoelectric-type aerosol sensor monitors the
scattered light from aerosol particles illuminated by an
infrared light-emitting diode (LED). The LED is pulsed by
the microcontroller, which waits about 300 ps to allow
settling before reading the scattered-light photodiode.

The electronics of the exemplary prototype are powered
by three AA batteries regulated to 3.3V plus a 3.0V reference
voltage (power supplies not shown) for the analog-to-digital
converter (ADC). Power is conserved between reading
cycles by having the microcontroller switch off the 3.3V
regulator that supplies power to all amplifiers, except for the
ionization circuit, which consumes negligible power. The
microcontroller is then set into a sleep mode for 3-10
seconds, after which power is reapplied to all circuits for
another reading cycle.

A speaker (not shown) is used to sound lower-frequency
alarms deemed to improve alerting. Studies of various
groups of subjects, including children and the elderly, tested
for their ability to hear various alarm signals, have shown
that voice alarms and a lower-pitch signal prompted better
alerting than high-pitched sounds (Ahrens, M. (2008).
“Home Smoke Alarms: The Data as Context for Decision.”
Fire Technology 44: 313-27). In particular, Thomas and
Bruck have found that a 520-Hz square-wave auditory signal
is much more effective than the currently used 3100-Hz T-3
alarm signal (Thomas, 1. and D. Bruck. “Awakening of
Sleeping People: A Decade of Research.” Fire Technology
46(3): 743-61). The widely spaced overtones produced by
the square-wave excitation of the voice-coil speakers appear
to be important in the alerting action. In the prototype, the
battery is directly connected to the 8-ohm speaker through a
switching transistor (not shown). If a fire alarm is warranted,
the microcontroller switches the transistor at a 520-Hz
frequency in a T-3cycle. If a CO toxic alarm is warranted, a
T-4 cycle can be used.

Exemplary Training Methods

FIG. 7 illustrates an embodiment of a method of training
a LDA classifier for a smoke detector. The method begins at
710 by inputting raw sensor data from a plurality of tests or
experiments. The data may be collected by performing
experiments that are monitored by one or more sensors over
the course of the experiment. The experiments include
various non-hazardous and hazardous conditions. For
example, experiments can include events that can be clas-
sified as “normal,” “non-flaming” or “smoldering,” and
“flaming.” As another example, experiments can include
events that can be classified as “normal,” “nuisance,” “smol-
dering,” “grease fire,” and “flaming.” The experiments can
include events such as “toxic gas present,” where the toxic
gas can be carbon monoxide or other toxic gases. Alterna-
tively, the raw sensor data can be data collected from prior
tests, such as published data that is available from the
Underwriter’s Laboratory (UL) and the National Institute of
Standards and Technology (NIST).

For example, training data for LDA transformations can
be UL and/or NIST test data from a series of tests for a
variety of flaming and non-flaming (smoldering) categories.
In one test, a coffee maker was set on fire and monitored for
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a period of time. The environment containing the coffee
maker was monitored by one or more sensors, such as an ion
sensor and a temperature sensor. The test data from the test
is a time-series of sensor data corresponding to data from
each sensor. The first three columns (Raw Data (V,)) of FIG.
8 show a small sample of the time and sensor data that would
be observed by a representative analog-to-digital converter
(ADC) connected to temperature and ionization sensors.

Returning to FIG. 7, the raw sensor data can be processed.
Processing can include using a processor to perform filtering
(720), creating derived signal data (730), or combinations
thereof. For example, at 720, the raw sensor data is filtered.
Filtering can include removing faulty sensor data from the
raw sensor data. If a sensor appears to be faulty during an
entire experiment, the entire time-series of sensor data
corresponding to the faulty sensor can be removed from the
raw sensor data. Alternatively, if a sensor appears to be
intermittently faulty, portions of the time-series of sensor
data corresponding to the faulty data can be removed from
the raw sensor data.

Filtering can include standardizing or normalizing raw
sensor data. Normalizing raw sensor data can include adding
or removing data from the raw sensor data. For example, it
may be desirable for the time-series of sensor data to have
the same sample rate for each sensor. However, the raw
sensor data may include sensors that have been sampled at
different sampling rates. For example, a carbon monoxide
sensor may be sampled every three seconds and a photo-
electric aerosol sensor may be sampled every six seconds. In
this example, filtering can include interpolating between
photoelectric aerosol sensor samples to create an interpo-
lated value between the actual samples. Thus, the photo-
electric aerosol sensor data can be modified to include a
sample for every three seconds to match the sampling period
of the carbon monoxide sensor. Filtering can also include
removing samples. For example, every other carbon mon-
oxide sample could be removed to match the six second
sampling period of the photoelectric aerosol sensor.

Filtering can also include selecting sensor data to keep or
remove for a given smoke detector placement. For example,
it may be desirable to tune a smoke detector for primary
placement in a bedroom or a kitchen. Sensor data from tests
that are likely to be applicable to the given placement can be
kept and sensor data that is less likely to be applicable to the
given placement can be removed. For example, data from
grease fire tests may be more applicable for a smoke detector
placed in a kitchen than in a bedroom. Thus, data from
grease-fire tests can be kept for a smoke detector tuned for
placement in a kitchen and removed for a smoke detector
tuned for placement in a bedroom. As another example,
alerting for smoldering fires may be more important in a
bedroom since sleeping occupants may be unaware of a
smoldering fire. In the kitchen, a smoldering fire may be less
likely or may potentially cause more false alarms. Thus, data
from smoldering tests can be removed for a kitchen smoke
detector and kept for a bedroom smoke detector, for
example.

At 730, derived sensor data is calculated from the sensor
data. In general, the set of derived sensor data represents
signals that are available or that can be calculated in an LDA
smoke detector. Derived sensor data can include applying
various scaling factors for weighting data from the various
sensors. For example, different sensors may output different
ranges of sensor data values over environmental conditions
of interest. For example, carbon monoxide sensor data may
range from O corresponding to O parts per million (ppm)
during normal conditions and 100 corresponding to 100 ppm
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at the onset of fire conditions and, aerosol sensor data may
range from O corresponding to 0 obscuration during normal
conditions and 0.15 corresponding to 0.15 obscuration at the
onset of fire conditions. In one embodiment, the different
sensor data ranges can be normalized by applying different
scaling factors to respective sensors. In this example, carbon
monoxide sensor data can be divided by 100 and aerosol
sensor data can be divided by 0.15 so that the derived sensor
data for each sensor ranges from 0 during normal conditions
to 1 at the onset of fire conditions. In an alternative embodi-
ment, the LDA sensitivity of one sensor relative to another
sensor can be adjusted by selection of the weighting factors.
In other words, the LDA can be made more (or less)
sensitive to a given sensor. In this example, the LDA can be
made more sensitive to carbon monoxide than aerosols by
dividing the carbon monoxide sensor data by 50 (so the
derived signal data ranges between 0 and 2) and dividing the
aerosol data by 0.15 (so the derived signal data ranges
between O and 1).

Derived sensor data can include the rate of change of
filtered sensor data. Derived sensor data can also include one
or more baselines calculated for each time-series of filtered
sensor data corresponding to a sensor. As one example, a
baseline can be a moving average, such as a simple moving
average, a cumulative moving average, or a weighted mov-
ing average. Multiple baselines can be calculated for one
time-series of sensor data. In other words, more than one
moving average can be calculated for a given sensor. The
baselines B, can be calculated using a moving average of n
previous measurements, where n can be chosen according a
time interval during which a signal change would be sig-
nificant.

The variable can be large to account for slow changes in
sensor baseline, perhaps caused by environmental drift in
temperature, humidity, or aerosols, for example. Changes
over shorter time intervals are more likely due to changing
conditions due to fires, so additional derived signals with
moving averages over shorter intervals, such as 5-10 min-
utes duration can be appropriate. Either or both longer and
shorter baseline averages can be utilized. In addition, more
than two baseline averages can be available. The period over
which the baseline average is calculated can be varied by
varying the sample rate of the sensor and n. If the smoke
alarm samples every 3 seconds, for example, setting n=2">
would correspond to a moving baseline average over about
6.8 hours, while a second setting of n'=27 would correspond
to a moving baseline average over about 6.4 minutes. Thus,
moving baseline averages can be calculated for the ranges of
5-10 minutes or 5-10 hours, or over other time intervals by
varying n, for example. Factors for selecting the period of
the baseline can include the sensitivity of the sensor, the
noise associated with the sensor, and the characteristics of
the smoke and/or fire conditions associated with the sensor.

In FIG. 8, three baselines are calculated, one for the
temperature and two for the ionization signal. For the
temperature baseline, labelled “T_base,” the average is over
32x10 seconds=320 seconds or about 5.3 minutes. Similarly,
the ionization sensor data is used to provide two moving
averages over 64 data points (“lonS_base”) and over 2048
data points (“lon_base”). These correspond to moving aver-
ages over about 10.7 minutes and 5.7 hours, respectively.

Baseline values can be calculated using a simple moving
average of n previous points, where the initial data point is
considered to repeat indefinitely into the past. Alternatively,
successive baseline values B,l,,.,, can be calculated from the
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ADC reading from each of the sensors according to a limited
variant of the cumulative moving average formula:

Bjlyery=[mB~BAV ]/n (D

Because microcontrollers can efficiently perform integer
multiplication and division in powers of two using register
shifts, it is convenient that n=2"" where m is an integer. In the
present example, n is chosen to be 2°=32, 2°-64, and
211=2048, for the three baselines, respectively. FIG. 8 shows
baselines calculated using Eq. (1).

Derived sensor data can include a difference between the
filtered sensor data and the moving average of the filtered
sensor data corresponding to one or more sensors. In FIG. 8,
“LD Signals (8S,)” are derived data representing raw sensor
data offset by the baseline values:

@

Derived sensor data can include the addition of sensor
variance in the training data. For example, if the manufac-
turing tolerance for the sensitivity of a sensor is +10%, then
additional sets of training data can be obtained by incorpo-
rating variants of the original training data in which the
sensor data for each additional set are multiplied by 1+x
where x corresponds to the tolerance, such as x ranging from
-10% to +10% for each additional set. In this way, realistic
variations in sensor performance can be incorporated in the
LDA without requiring numerous experimental tests to
establish the training data.

Returning to FIG. 7, at 740, sensor data is assigned to a
group or category. In one embodiment, the sensor data is
assigned on a per experiment basis. Thus, the sensor data for
one experiment is associated with a single classification. For
example, sensor data from the flaming coffee maker experi-
ment could be assigned to the “flaming” group. As another
example, sensor data from a smoldering chair experiment
could be assigned to the “smoldering” group. In an alterna-
tive embodiment, the raw sensor data or the derived sensor
data for a given time period or time interval within an
experiment can be assigned to a group, with different groups
being assigned to the data from different time periods. Thus,
the time-series of sensor data can be divided into different
time periods and each time period can be associated with a
determined category that can be the same or different
depending on the data. Each of the categories can be
associated with a hazardous or a non-hazardous condition.

For example, data from a single smoldering chair experi-
ment may be divided into time periods that could be
assigned to the “normal,” “smoldering,” and “flaming”
groups. The normal group is associated with a non-hazard-
ous condition and the smoldering and flaming groups are
associated with a hazardous condition. At the beginning of
the experiment, the smoldering chair may not give off much
heat, smoke, and/or carbon monoxide and the sensor data for
that period may be assigned to “normal.” As the experiment
progresses, the output of heat, smoke, and/or carbon mon-
oxide may progress and the sensor data for that period may
be assigned to “smoldering.” Near the end of the experi-
ment, the chair may burst into flames and the sensor data for
that period may be assigned to “flaming.”

In one embodiment, the assignments can be made by an
observer of the experiment noting the time of each event
during the experiment. In an alternative embodiment, the
assignments can be made by examining the time-series of
sensor data. For example, a person skilled in the art of
detecting fires from sensor data could assign groups to the
periods of time based on his or her knowledge of the output
of various sensors for different types of smoke and fire

S;=V~B;
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events. In yet another embodiment, processor implemented
rules can be set to assign groups to the time periods of a
time-series of sensor data. For example, a temperature rise
above a threshold value can be established as a rule indi-
cating a transition into the “flaming” category. As another
example, a carbon monoxide level above a threshold without
an abrupt rise in temperature can be established as indicating
a transition into the “smoldering” category. As another
example, when all sensors are below their corresponding
alarm thresholds, a rule can assign data to a “normal”
category.

During some time periods of an experiment, the sensor
data may be inconclusive, such as when transitioning from
one category to a different category. During other periods of
an experiment, the sensor data may be extreme (such as
when a fire is at its most intense level) and less useful for
detecting the onset of a hazardous event. Assignment of the
sensor data to a category may include excluding extreme or
inconclusive sensor data from any category. Extreme sensor
data can include sensor data that exceeds a pre-defined
threshold for the sensor data of a given sensor. For example,
extreme sensor data can include sensor data values that are
greater than twice the sensor data values at the onset of an
alarm.

For the UL tests, data near the start of each test (t=0
seconds) may be given the group assignment of “normal”
since the signals did not deviate significantly from those at
the start. For example, in FIG. 8, the data through time 100
is classified as “normal.” UL gave the coffee maker test a
“flaming” assignment based upon the point at which a
commercial smoke alarm device turned on its alarm. In the
actual test, the commercial smoke alarm device turned on its
alarm at 210 seconds when Aion=382.9. In the present
example, the “flaming” assignment was given to time-
resolved points that had values of the signal “Aion” greater
than 25 percent of the value at the time of alarm
(382.9%25%=95.7). The point at 110 seconds is excluded
due to its transitional nature. The points in the test after 210
seconds are excluded due to their extreme nature, where the
“lonS_base” derived signal is about twice its value at the
onset of being assigned to the flaming group (at 120 sec-
onds).

Returning to FIG. 7, at 750, sensor data and the group
assignments for each test and/or periods of each experiment
are used as training input to a linear discriminant analysis
(LDA). Raw sensor data, filtered raw sensor data, derived
sensor data, and/or combinations thereof can be used to train
the LDA. Using the same set of tests, different combinations
of sensor data can be used to train different smoke detectors.
For example, the training data may include data samples
taken from a photoelectric acrosol sensor, an ionization
aerosol sensor, a temperature sensor, and a carbon monoxide
sensor. A first smoke detector may have only an ionization
aerosol sensor. Training data for the first smoke detector can
be limited to data and/or derived data corresponding to an
ionization aerosol sensor. On the other hand, a second smoke
detector may have an ionization aerosol sensor and a carbon
monoxide sensor. Training data for the second smoke detec-
tor can include data and/or derived data corresponding to an
ionization aerosol sensor and a carbon monoxide sensor. In
one embodiment, the signals S, (from FIG. 8) are used as
input data for LDA training along with the assignment of the
time-resolved data to a group.

It will be understood that the training data for the LDA
typically contains numerous tests taken under a variety of
conditions, and each test would typically have baselines and
assignments performed in a similar manner, e.g. according
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to steps 710-740, to the flaming coffee maker data in FIG. 8.
In the UL and NIST tests, some tests were generally con-
sidered “flaming” because flames were quickly apparent
after test initiation (t=0 seconds) or “smoldering” because
flames were not apparent until late in the tests.

LDA training can be performed upon the preprocessed
data to yield a uniquely determined solution. A variety of
software packages executed on a variety of computing
platforms can be used for LDA training. Representative
non-limiting examples of computing platforms include per-
sonal computers (Windows or MacOS) and UNIX or
LINUX workstations. Representative non-limiting examples
of software packages include “R,” Mathematica, Matlab,
SAS, SPSS, and Stata. For example, the open-source statis-
tical software program “R” can be used along with a library
package “MASS” with the routine “lda( ).” For the present
example, the input is a data matrix with the number of rows
equal to the number of observations in the training data,
nobs, and np=3 columns, the 3 columns labelled “LD
signals” in FIG. 8. A vector of length nobs with group
membership is also input, the “Assigned Group” column in
FIG. 8. Equal priors can be specified in a vector of length ng,
the number of groups, each with value 1/ng, although other
values may be used. In this example ng=3 for groups
“Normal,” “Flaming,” and “Smoldering” with the priors for
each of 4.

The output of LDA training includes a plurality of coef-
ficients, and desirably a plurality of constants and a plurality
of centroids. Each centroid can correspond to one of the
predetermined groups. Tables 1 and 2 (below) illustrate the
object output data from lda when using the UL tests pro-
cessed in accordance with steps 710-750.

Table 1 illustrates the coeflicients and constants deter-
mined in the example LDA. The C, constant terms are the
means of the group means in this example. C; ,,;; and C; ,,,
are coefficients to transform the respective signals into linear
discriminant (D) coordinates and have been multiplied by
4096.

Signal C, CLDI1, CLD2,
AT 14 860 -19
AionS 77 87 -276
Aion 97 -30 350

Table 2 illustrates the average LD coordinates (LD1,,
LD2,), e.g., centroids, of the training data associated with
each of the assigned groups.

Group LD1, LD2,
Normal -4 -3
Flaming 7 0
Smoldering -3 3

Returning to FIG. 7, at 760, LDA output is stored in a
computer-readable medium. The output from LDA training
provides a set of terms that can be employed for classifica-
tion of observations by relatively simple computing plat-
forms, including, but not limited to, inexpensive microcon-
trollers used in modern home smoke alarms. For example,
the plurality of coefficients, the plurality of constants, and
the plurality of centroids generated by the LDA at 750 can
be stored in storage or memory 120 of the system 100 so that
the system 100 is trained to detect hazardous environmental
conditions. The LDA output can also be stored in the storage
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or memory of more complex systems such as those
employed in fire control panels of commercial fire monitor-
ing systems so that classification can be performed on more
complex systems.

Exemplary Detection Methods

FIG. 9 illustrates an embodiment of a method for a smoke
detector, such as a smoke detector configured in accordance
with FIG. 1, or FIGS. 2-6, for example. The method can be
used to detect a hazardous environmental condition, such as
a fire or the presence of toxic gas. The method begins at 910,
where sensor data that is indicative of present environmental
conditions is received. The sensor data can include data from
an aerosol sensor (photoelectric or ionization), a temperature
sensor, a carbon monoxide sensor, a carbon dioxide sensor,
and/or a Taguchi sensor, for example. As described above
with reference to LDA training, the types of sensors included
in the smoke detector should correspond to the sensors used
for LDA training of the smoke detector.

For the remainder of the “Exemplary Detection Methods”
section, a specific example is given of calculations per-
formed by a microcontroller connected to analog voltage
signals from a temperature sensor and an ionization-type
aerosol detector. The data originates from a specific test fire
(UL: F Coffee maker 12134) used for LDA training that
incorporated a full suite of tests. In FIG. 10, the raw data
(Raw data (V,)) is given in analog-to-digital converter
(ADC) units for the temperature and ionization sensors.

Returning to FIG. 9, at 920, derived sensor data is
generated based on the received sensor data. In one example,
the raw data can be preprocessed by baseline correction and
calculation of a rate of change. For baseline calculations,
moving averages over various time intervals can be used. In
one embodiment, the baseline multiplied by n is stored (i.e.,
store nB,;). The baseline is updated using the ADC value of
the signal V,. In the present example, the value of i ranges
from 1 to 3, representing each of the three signals used (AT,
AionS, and Aion).

©)

nB;
nB; |pew = nB; — e +Vi

B; lnew = 1B; |new /1

It is preferable to use the same value of n used to calculate
the baselines that were used in the LDA training. In FIG. 10,
the column labeled “T_b*32” corresponds to the tempera-
ture baseline times 32, or equivalent to 32B,, . rveliow
The time interval over which the baseline is calculated is n
times the reading interval between successive sensor read-
ings, which in the example is 10 seconds. In this case, the
average is over 32x10 seconds=320 seconds or about 5.3
minutes. The column labeled “T_base” corresponds to the
temperature baseline, which is calculated by dividing by 32
the data in the column labeled “T_b*32”. Similarly the
ionization sensor data is used to provide two moving aver-
ages over 64 data points (“lonS_base”) and 2048 data points
(“Ion_base™). These correspond to moving averages over
about 10.7 minutes and 5.7 hours, respectively.

In an alternative example, the baseline multiplied by 2,
(e.g., 2°B,) can be stored for baseline calculations, and the
baseline can be updated using the ADC value of the signal
V.V,

2"B;
on
Bi lnew =2"B; lnew /2

4
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Division by 2" 2” can be accomplished by a microcon-
troller register shift of n places to the right. The time interval
over which the baseline is calculated in 2" times the reading
interval. For example, if the reading interval is 10 seconds,
setting n=11 corresponds to a moving average over approxi-
mately 8 hours. Typically, a 32-bit integer can be used to
store 2”B,.

After calculating baselines for the sensor data, the sensor
data may be further processed. For example, the sensor data
may be normalized by subtracting the respective baselines
B, and constants C, (or the mean of the group means)
predetermined by the training phase of the LDA:

S=V-B-~C; (5)

The Ci values for this example are shown above in Table
1. Thus, the data in columns labeled AT, AionS and Aion of
FIG. 10 correspond to the three LD signals S, of FIG. 8 used
to train the LDA.

Returning to FIG. 9, at 930, sensor data is transformed
into LD coordinates (LD1, L.D2) using the set of coefficients
predetermined by LDA training. The coefficients C,,,,; and
C, ps; are also shown in Table 1 above for the example LDA.
Since the coefficients have been multiplied by 4096 in this
example to enable accurate calculation by integer arithmetic,
the products are divided by 4096 to determine the LD
coordinates.

LD1=3_3(Cypy,;5:)/4096
and

LD2=3, 3(Cyp:S:)/4096 (6)

At 940, the Cartesian distance from the sensor data in LD
coordinates (LD LD2) to each of the average LD coordinates
(LD1,, LD2,) or centroids for each group can be determined.
Coordinates for “normal,” “flaming,” and “smoldering™ are
listed for the example in Table 2. The distances squared, R,?,
to each centroid are

R2=(LD1,~LD1)>+(LD2,~LD2)? @)

At 950, the environmental conditions are classified based
on the LD mapping. In one embodiment, classification can
be performed by determining which centroid is the nearest
to the current LD coordinates (LD1, LD2). The minimum
distance can be used to assign the group as is shown in the
example in FIG. 10. At time 0 to time 110, the nearest
(closest distance-wise) centroid is the centroid associated
with the normal group. At time 120 and above, the nearest
centroid is the centroid associated with the flaming group.

Alternatively, circular and non-circular thresholds can be
used to qualify classification to particular groups. Generally,
the classification of the present environmental conditions as
belonging to a particular group can be based on the linear
discriminant mapping being outside a threshold in linear
discriminant coordinates. In one example, the classification
can be based on the linear discriminant mapping being on
one side of a linear or non-linear curve in two-dimensional
linear discriminant coordinates. For example, the classifica-
tion of “normal” could be chosen unless either LD1 is
greater than O or LD2 is greater than 0. As another example,
the classification can be based on the linear discriminant
mapping being on one side of a planar or non-planar surface
in three-dimensional linear discriminant coordinates.

Returning to FIG. 9, at 960, an alarm could be signaled if
the classification is associated with a hazardous group. For
example, an alarm can be signaled if either a smoldering or
a flaming group is assigned. Alternatively, no alarm will be
signaled if the normal or nuisance group is assigned. In one
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embodiment, the alarm can be signaled via an audible alert.
In an alternative embodiment, the alarm can be signaled via
a notification sent to a fire control panel or to a monitoring
service, for example.

The above approaches do not totally eliminate false
alarms, but reduce their number and also often results in a
more rapid determination after existence of a fire in com-
parison to other approaches known to the inventors.

LDA Studies Using Fire Test Data

In this study, training data for LDA transformations were
supplied by Underwriters Laboratory, Inc. (UL) (Fabian, T.
Z. and Gandhi, P. D. 2007. “Smoke Characterization Proj-
ect.” Northbrook, Ill.: Underwriters Laboratory, Inc.) and
National Institute of Standards and Technology (NIST)
(Bukowski, R. W. et al. “Performance of Home Smoke
Alarms.” National Institute of Standards and Technology
Technical Note 1455-1, February 2008 Revision) and taken
from historical tests of fire and nuisance situations in home
dwellings. The UL data was recorded by multiple sensors
during 18 fire tests in the UL217/UL268 Fire Test Room.
The NIST data were recorded during 21 fires each with
multiple sensor locations (67 total) in a manufactured and a
two-story home plus 25 nuisance tests. The ceiling sensors
common to both UL and NIST tests included photoelectric,
ionization, temperature, and CO sensors, as well as com-
mercial home smoke alarms.

An LDA was constructed using the UL fire data with
events categorized as flaming or non-flaming fires. Data
recorded prior to the onset of the fire was categorized as
“normal.” Only three channels of data were included in the
analysis: 1) the baseline corrected ionization signal, 2) its
rate of change, and 3) the rate of change of the temperature.
A plot of the first two dimensions in LDA space is shown in
FIG. 11. The conditions denoting normal, flaming and
non-flaming are generally distinctive with little overlap.
This indicates that a smoke detector configured according to
this disclosure could detect hazardous conditions if the LDA
coordinates were outside of the “normal” region.

To illustrate the progression of a fire, FIGS. 12A and 12B
show the calculated LDA coordinates during two test fires.
The coordinates go from normal conditions toward and
beyond the centroids expected for flaming and non-flaming
fires. Although the LDA coordinates can resolve the differ-
ences between the two types of fires, a typical residential
alarm system could be configured to emit one alarm sound
for either type of fire.

Early detection times are desirable to extend the time for
safe egress in emergency conditions. In the flaming fire test
shown in FIG. 12A, the commercial alarms sounded at 3.5
minutes for an ionization alarm and 7.3 minutes for a
photoelectric alarm. The alarm based upon LDA coordinate
proximity to each of the centroids would have triggered at
2.2 minutes or 37 percent faster than the commercial ion-
ization alarm. In the case of the smoldering fire shown in
FIG. 12B, the commercial alarms sounded at 45 minutes and
48 minutes respectively, while the LDA alarm would have
alerted at 34 minutes or 24 percent faster.

The NIST data includes a variety of fires and nuisance
sources, so that response time and false-alarm rejection can
be evaluated for various LDAs. Because the characteristics
of'the fires change during their evolution, groups were more
narrowly defined according to sensor response. For example,
data were considered as “Flaming” when the rates of
increase in temperature and ionization signal were above set
thresholds. Conversely, data were considered as “Smolder-
ing” when the rates of increase in temperature and ionization
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signal were below set thresholds. Other signals can be
considered as well in this group categorization. An example
is shown in FIG. 13.

The performance of various LDA-based alarms was com-
pared to the commercial alarms used in the NIST tests.
Using four sensors, ionization, photoelectric, temperature
and carbon monoxide, an LDA alarm would have alerted to
the smoldering fires an average of more than 18 minutes
faster than a conventional photoelectric-ionization combi-
nation alarm. Such an LDA alarm was also found to trigger
more slowly than conventional smoke alarms and fully
suppress half of the nuisances that triggered false alarms in
conventional smoke alarms. In another example using only
photoelectric and temperature sensors, an LDA alarm would
have alerted to the smoldering fires an average of more than
23 minutes faster than a conventional photoelectric-ioniza-
tion combination alarm and generally responded more
slowly to nuisances but fully rejected about 1 in 5 nuisance
sources. Even when a conventional photoelectric sensor was
only used, LDA processing was shown to have improved the
alerting to smoldering fires by an average of 20 minutes
compared to a conventional photoelectric alarm, although
there was only a small improvement in false-alarm rejection.

The conclusion is that LDA processing alone can improve
response time, at least for smoldering fires, while adding
additional sensors can provide enhanced rejection of nui-
sance sources for false alarms. The addition of carbon
monoxide sensing is two-fold: (1) acting as a toxic-gas
sensor and (2) acting in concert with smoke sensors for fire
detection.

In view of the many possible embodiments to which the
principles of the disclosed invention may be applied, it
should be recognized that the illustrated embodiments are
only preferred examples of the invention and should not be
taken as limiting the scope of the invention. Rather, the
scope of the invention is defined by the following claims. We
therefore claim as our invention all that comes within the
scope and spirit of these claims.

We claim:

1. A smoke detector, comprising:

a computer readable medium including linear discrimi-
nant analysis (LDA) training output data generated by:

inputting sensor data from a plurality of tests, the sensor
data indicative of environmental conditions during the
respective tests;

processing the sensor data to generate derived signal data
for the respective tests;

assigning at least one group to the derived signal data for
the respective tests, the at least one group selected from
a plurality of groups, each group of the plurality of
groups associated with a hazardous condition or a
non-hazardous condition; and

performing LDA training using the derived signal data
and the assigned at least one group for the respective
tests as input to the LDA training, the output of the
LDA training generating a plurality of transformation
coefficients for transforming derived signal data into
linear discriminant (LD) coordinates, a mean of group
means, and a plurality of centroids in linear discrimi-
nant coordinates, wherein the plurality of centroids
includes a different centroid for each group of the
plurality of groups;

a plurality of sensors configured to observe present envi-
ronmental conditions, the plurality of sensors compris-
ing an aerosol sensor and a carbon monoxide sensor;
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a processor operatively connected to the computer read-
able memory and the plurality of sensors, the processor
configured to:

process data from the plurality of sensors to provide data
in a plurality of data channels indicative of the present
environmental conditions;

map the data from the plurality of data channels into linear
discriminant space using the plurality of transformation
coeflicients stored in the computer readable medium;

classify the present environmental conditions as belong-
ing to one group of the plurality of groups based on the
linear discriminant mapping of the data from the plu-
rality of data channels; and

signal an alarm condition if the present environmental
conditions are classified as belonging to a group asso-
ciated with a hazardous condition; and

an alarm operatively connected to the processor, the alarm
generating an audible alert, a visual alert, or a combi-
nation thereof in response to the alarm signal.

2. The smoke detector of claim 1, wherein the classifica-
tion of the present environmental conditions as belonging to
one group of the plurality of groups is based on the linear
discriminant mapping of the plurality of data channels being
outside a threshold in linear discriminant coordinates.

3. The smoke detector of claim 1, wherein processing the
sensor data to generate derived signal data for the respective
tests comprises applying different scaling factors to sensor
data associated with different respective sensors.

4. The smoke detector of claim 1, wherein processing the
sensor data to generate derived signal data for the respective
tests comprises determining a difference between the sensor
data and a moving average of the sensor data.

5. The smoke detector of claim 1, wherein assigning at
least one group to the derived signal data for the respective
tests comprises excluding extreme or inconclusive sensor
data from any group.

6. The smoke detector of claim 1, wherein the inputted
sensor data from the plurality of tests comprises data from
individual tests broken down into time intervals for the test
and wherein assigning at least one group to the derived
signal data for the respective tests comprises assigning
derived signal data for the time intervals to the groups.

7. A method of training a classifier for a smoke detector
tuned for placement in a kitchen, comprising:

inputting sensor data from a plurality of tests into a
processor, the sensor data indicative of environmental
conditions during the tests;

using the processor to process the sensor data from the
tests to generate derived signal data corresponding to
the test data for respective tests, wherein processing the
sensor data comprises tuning sensor data for detecting
fires in the kitchen;

assigning the derived signal data into categories compris-
ing at least one fire group and at least one non-fire
group;

performing linear discriminant analysis (LDA) training
using the processor and the derived signal data and the
assigned categories for the derived signal data as input
to the LDA ftraining, the output of the LDA training
generating a centroid in linear discriminant coordinates
for each of the categories, a plurality of coefficients for
transforming derived signal data into linear discrimi-
nant (LD) coordinates, and a mean of group means; and

storing the plurality of coefficients, the plurality of cen-
troids, and the mean of group means in a computer
readable medium.
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8. The method of claim 7, wherein the categories com-
prise plural fire groups, the fire groups including a flaming
fire group and a non-flaming fire group.

9. The method of claim 8, wherein the at least one non-fire
group comprises a normal group and a nuisance non-fire
indicating group.

10. The method of claim 7, wherein tuning sensor data for
detecting fires in the kitchen comprises removing any sensor
data from grease-fire tests.

11. The method of claim 7, wherein using the processor to
process the sensor data from the tests to generate the derived
signal data comprises applying different scaling factors to
sensor data associated with different respective sensors.

12. The method of claim 7, wherein using the processor
to process the sensor data from the tests to generate the
derived signal data comprises determining a difference
between the sensor data and a moving average of the sensor
data.

13. The method of claim 7, wherein the act of assigning
the derived signal data into categories comprises excluding
extreme and inconclusive sensor data from any category.

14. A non-transitory computer-readable medium storing
computer-executable instructions thereon, the instructions
for causing a processor to perform acts for training a
classifier for a smoke detector, the acts comprising:

inputting sensor data from a plurality of tests into the

processor, the sensor data indicative of environmental
conditions during the tests;

using the processor to process the sensor data from the

tests to generate derived signal data corresponding to
the test data for respective tests;

assigning the derived signal data into categories compris-

ing at least one fire group and at least one non-fire
group;
performing linear discriminant analysis (LDA) training
using the processor and the derived signal data and the
assigned categories for the derived signal data as input
to the LDA ftraining, the output of the LDA training
generating a centroid in linear discriminant coordinates
for each of the categories, a plurality of coeflicients for
transforming derived signal data into linear discrimi-
nant (LD) coordinates, and a mean of group means; and

storing the plurality of coefficients, the plurality of cen-
troids, and the mean of group means.

15. The non-transitory computer-readable medium of
claim 14, wherein the act of assigning the derived signal data
into categories comprises excluding extreme and inconclu-
sive sensor data from any category.

16. The non-transitory computer-readable medium of
claim 14, wherein the inputted sensor data from the plurality
of tests comprises data from individual tests broken down
into time intervals for the test and the act of assigning
comprises assigning derived signal data for the time inter-
vals to the categories.

17. The non-transitory computer-readable medium of
claim 14, wherein the sensor data includes data from an
aerosol sensor and one or more sensors selected from the
group consisting of a temperature sensor, a carbon monoxide
sensor, a Taguchi sensor, and a carbon monoxide sensor.

18. The non-transitory computer-readable medium of
claim 14, wherein the sensor data from each test is a
time-series of sensor data over time periods and wherein the
act of processing the sensor data comprises:

generating a first baseline based on a moving average over

n previous measurements of the sensor data; and
calculating a difference between a present measurement
of the sensor data and the first baseline.
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19. The non-transitory computer-readable medium of
claim 14, wherein the act of assigning the derived signal data
into categories comprises assigning the derived signal data
for the respective time periods into the categories.

20. The non-transitory computer-readable medium of
claim 14, wherein the act of storing comprises storing the
plurality of coefficients, the plurality of centroids, and the
mean of group means in a computer readable medium of the
smoke detector.
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